Abstract

The use of microbial inoculum and a hydrocarbon adsorbent as a soil amendment was examined to improve bioremediation efficacy of soil contaminated by volatile hydrocarbons. Biodegradation and volatilization losses of VOCs were assessed under contained composting in the laboratory and technical scales. Rhodococcus opacus GM-14, a degrader of a multitude of different hydrocarbons was used as an inoculum and activated carbon as a VOC adsorbent on a laboratory scale. Inoculating soil with R. opacus (0.02 mg R. opacus biomass per 1 mg of benzene) reduced volatilization of benzene from 80% to 40%. Amending the soil with activated carbon reduced volatilization of benzene to 15% and further to 4% when used together with R. opacus. Both amendments promoted mineralization when used separately but slowed down the mineralization when combined. Activated carbon improved the biodegradation of VOCs also during technical scale compostings (700–1100 kg of soil with 1.6–2.4 kg of VOC) from 30–40% to 86% and reduced volatilization from 40–50% to 2–5%. Reduction of VOC volatilization by use of the activated carbon improved the efficiency of VOC biodegradation on a technical scale. The activated carbon addition improves the occupational safety at the contaminated site and during transport.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call