Abstract
Binding affinity prediction has been considered as a fundamental task in drug discovery. Despite much effort to improve accuracy of binding affinity prediction, the prior work considered only macro-level features that can represent the characteristics of the whole architecture of a drug and a target protein, and the features from local structure of the drug and the protein tend to be lost. In this paper, we propose a deep learning model that can comprehensively extract the local features of both a drug and a target protein for accurate binding affinity prediction. The proposed model consists of two components named as Multi-Stream CNN and Multi-Stream GCN, each of which is responsible for capturing micro-level characteristics or local features from subsequences of a target protein sequence and subgraph of a drug molecule, respectively. Having multiple streams consisting of different numbers of layers, both the components can compute and preserve the local features with a stream consisting of a single layer. Our evaluation with two popular datasets, Davis and KIBA, demonstrates that the proposed model outperforms all the baseline models using the global features, implying that local features play significant roles of binding affinity prediction.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.