Abstract

Three-dimensional (3D) printed samples produced by fused deposition modeling (FDM) have low interlayer shear strength and poor bending mechanical properties owing to the technological characteristics of the accumulation of raster pattern and layers. The present study input ultrasonic vibration energy to 3D printed samples under pressure, and investigated the effects of ultrasonic vibration on the bending and dynamic mechanical properties of FDM 3D printed ABS samples. It was found that ultrasonic strengthening increased the bending strength of ABS samples by 10.8%, increased the bending modulus by 12.5%, and improved the dynamic mechanical properties. The combination of ultrasonic strengthening technology and FDM 3D printing technology can improve the flexural and dynamic mechanical properties of existing FDM 3D printed samples, and is important in broadening the application of 3D printed parts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.