Abstract
SummaryAfter a machine failure, batch schedulers typically re‐schedule the job that failed with a high priority. This is fair for the failed job but still requires that job to re‐enter the submission queue and to wait for enough resources to become available. The waiting time can be very long when the job is large and the platform highly loaded, as is the case with typical HPC platforms. We propose another strategy: when a job fails, if no platform node is available, we steal one node from another job , and use it to continue the execution of despite the failure. In this work, we give a detailed assessment of this node stealing strategy using traces from the Mira supercomputer at Argonne National Laboratory. The main conclusion is that node stealing improves the utilization of the platform and dramatically reduces the flow of large jobs, at the price of slightly increasing the flow of small jobs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Concurrency and Computation: Practice and Experience
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.