Abstract

The culture filtrate proteins (CFPs) from Mycobacterium tuberculosis have been shown to induce protective immune responses in human and animal models, making them a promising source of candidate targets for tuberculosis drugs, vaccines, and diagnostics. The constituents of the M. tuberculosis CFP proteome are complex and vary with growth conditions. To effectively profile CFPs, gel-based prefractionation is usually performed before MS analysis. In this study, we describe a novel prefractionation approach by which the proteome is divided into seven partially overlapping fractions by biomimetic affinity chromatography (BiAC) using a six-column cascade. The LC-MS/MS analysis of individual fractions identified a total of 541 CFPs, including 61 first-time identifications. Notably, ∼1/3 (20/61) of these novel CFPs are membrane proteins, among which nine proteins have 2-14 transmembrane domains. In addition, ∼1/4 (14/61) of the CFPs are basic proteins with pI values greater than 9.0. Our data demonstrate that biomimetic affinity chromatography prefractionation markedly improves protein detection by LC-MS/MS, and the coverage of basic and hydrophobic proteins in particular is remarkably increased.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.