Abstract
Audio source localization in reverberant environments is difficult for automated microphone array systems. Certain features observable in the audio signal, such as sudden increases in audio energy, provide cues to indicate time-frequency regions that are particularly useful for audio localization, but previous approaches have not systematically exploited these cues. We learn a mapping from reverberated signal spectrograms to localization precision using ridge regression. The resulting mappings exhibit behavior consistent with the well-known precedence effect from psychoacoustic studies. Using the learned mappings, we demonstrate improved localization performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.