Abstract

Query expansion (QE) using pseudo relevance feedback (PRF) is one of the approaches that has been shown to be effective for improving microblog retrieval. In this paper, we investigate the performance of three different embedding-based methods on Arabic microblog retrieval: Embedding-based QE, Embedding-based PRF, and PRF incorporated with embedding-based reranking. Our experimental results over three variants of EveTAR test collection showed a consistent improvement of the reranking method over the traditional PRF baseline using both MAP and P@10 evaluation measures. The improvement is statistically-significant in some cases. However, while the embedding-based QE fails to improve over the traditional PRF, the embedding-based PRF successfully outperforms the baseline in several cases, with a statistically-significant improvement using MAP measure over two variants of the test collection.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.