Abstract

This paper presents a study on improving the performance of the acoustic piezoelectric transducer system in air, as the low acoustic impedance of air leads to suboptimal system performance. Impedance matching techniques can enhance the acoustic power transfer (APT) system's performance in air. This study integrates an impedance matching circuit into the Mason circuit and investigates the impact of fixed constraints on the piezoelectric transducer's sound pressure and output voltage. Additionally, this paper proposes a novel equilateral triangular peripheral clamp that is entirely 3D-printable and cost-effective. This study analyses the peripheral clamp's impedance and distance characteristics and confirms its effectiveness through consistent experimental and simulation results. The findings of this study can aid researchers and practitioners in various fields that employ APT systems to improve their performance in air.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.