Abstract
A large number of sensors based on Internet of Things (IoT) technology are now widely deployed in artificial intelligence, health care monitoring, air quality monitoring, and other fields. The sensors require high power consumption for real-time monitoring data. Some studies have suggested using solar energy for the primary power source to operate sensors. However, due to uncertain climate change, solar energy supply cannot always provide sufficient voltage to operate sensors. Consequently, some abnormal behavior events frequently occur in the IoT system using solar energy. Abnormal detection is a typical imbalanced learning problem due to the very rare amount of abnormal events. Under such data with skewed class distribution, classic classification models fail to provide reliable classification results with abnormal events. Under this condition, in this paper, deploying solar energy supply, we developed an IoT-based system using Arduino Microcontroller and Banana Pi, in which, the SMOTE-PSO algorithm is utilized to improve classification accuracies on abnormal event data in our system. Finally, two types of SVM kernel functions are used to verify classification capability in the developed IoT system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.