Abstract
Current Network Behavior Analysis (NBA) techniques are based on anomaly detection principles and therefore subject to high error rates. We propose a mechanism that deploys trust modeling, a technique for cooperator modeling from the multi-agent research, to improve the quality of NBA results. Our system is designed as a set of agents, each of them based on an existing anomaly detection algorithm coupled with a trust model based on the same traffic representation. These agents minimize the error rate by unsupervised, multi-layer integration of traffic classification. The system has been evaluated on real traffic in Czech academic networks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.