Abstract

The concept of the feeding strategy was to minimise the formation of inhibiting metabolites and to increase the yield of monoclonal antibodies in fed-batch cultures of hybridoma cells by a balanced supply of substrates. A process control system based on fieldbus technology was used for monitoring and control. External program routines were implemented to control dissolved oxygen (DO) and to calculate the oxygen uptake rate (OUR) and cumulative oxygen consumption (COC) simultaneously. A concentrated feed solution was supplied according to the off-line estimated stoichiometric ratio between oxygen and glucose consumption (GC). Feeding was initiated automatically when the OUR decreased due to substrate limitation. The antibody concentration increased three-fold compared to the conventional batch culture by applying this strategy. But it was not possible to avoid inhibition by ammonia during the fed-batch phase. This was accomplished by the use of a dialysis membrane. Dialysis fed-batch cultures were performed in a membrane dialysis reactor with a `nutrient-split' feeding strategy, where concentrated medium is fed to the cells and toxic metabolites are removed into a buffer solution. This resulted in a ten-fold increase of the antibody concentration compared to the batch. Amino acid concentrations were analysed to identify limiting conditions during the cultivation and to analyse the performance of the nutrient supply in the fed-batch and dialysis fed-batch.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call