Abstract

AbstractThe industrial scale capture of CO2 from flue gas streams is becoming an increasingly important environmental issue. However, many of the existing CO2 capture systems either have regenerative energy demands that are too high or are cost prohibitive. A promising solution is the utilization of functionalized solid sorbents, such as porous polymer networks (PPNs). PPNs are attractive due to their inherent structural stability, flexibility, high surface areas, and ability to incorporate various functional groups within the chemical scaffold. Herein, a low cost, scalable alternative to common carbon capture systems using a series of robust mesoporous melamine‐formaldehyde resins (mPMFs) loaded with active alkylamine sorbents is presented, which is dubbed as the PPN‐150 family. The variants within this material class are differentiated based on the incorporation of functionalized dopants; small molecules added at low molar percent concentrations to impart additional functionality into the PPN in order to achieve low cost noncovalent tethering of alkylamines. The cyanuric acid doped PPN‐151‐DETA (DETA = diethylenetriamine) demonstrate unique features such as improved cycling capacity and heat of adsorption. To show its scalability, PPN‐151‐DETA is successfully synthesized at the 250 g scale without loss of the sorbent properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.