Abstract

Learning Bayesian Network structure from database is an NP-hard problem and still one of the most exciting challenges in machine learning. Most of the widely used heuristics search for the (locally) optimal graphs by defining a score metric and employs a search strategy to identify the network structure having the maximum score. In this work, we propose a new score (named implicit score) based on the Implicit inference framework that we proposed earlier. We then implemented this score within the K2 and MWST algorithms for network structure learning. Performance of the new score metric was evaluated on a benchmark database (ASIA Network) and a biomedical database of breast cancer in comparison with traditional score metrics BIC and BD Mutual Information. We show that implicit score yields improved performance over other scores when used with the MWST algorithm and have similar performance when implemented within K2 algorithm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.