Abstract

Existing methods for fine-scale air quality assessment have significant gaps in their reliability. Purely data-driven methods lack any physically-based mechanisms to simulate the interactive process of air pollution, potentially leading to physically inconsistent or implausible results. Here, we report a hybrid multilevel graph neural network that encodes fluid physics to capture spatial and temporal dynamic characteristics of air pollutants. On a multi-air pollutant test in China, our method consistently improved extrapolation accuracy by an average of 11–22% compared to several baseline machine learning methods, and generated physically consistent spatiotemporal trends of air pollutants at fine spatial and temporal scales.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call