Abstract

Many forms of air pollution increase as science and technology rapidly advance. In particular, fine dust harms the human body, causing or worsening heart and lung-related diseases. In this study, the level of fine dust in Seoul after 8 h is predicted to prevent health damage in advance. We construct a dataset by combining two modalities (i.e., numerical and image data) for accurate prediction. In addition, we propose a multimodal deep learning model combining a Long Short Term Memory (LSTM) and Convolutional Neural Network (CNN). An LSTM AutoEncoder is chosen as a model for numerical time series data processing and basic CNN. A Visual Geometry Group Neural Network (VGGNet) (VGG16, VGG19) is also chosen as a CNN model for image processing to compare performance differences according to network depth. The VGGNet is a standard deep CNN architecture with multiple layers. Our multimodal deep learning model using two modalities (i.e., numerical and image data) showed better performance than a single deep learning model using only one modality (numerical data). Specifically, the performance improved up to 14.16% when the VGG19 model, which has a deeper network, was used rather than the VGG16 model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.