Abstract

As low-cost sensors have become ubiquitous in air quality measurements, there is a need for more efficient calibration and quantification practices. Here, we deploy stationary low-cost monitors in Colorado and Southern California near oil and gas facilities, focusing our analysis on methane and ozone concentration measurement using metal oxide sensors. In comparing different sensor signal normalization techniques, we propose a z-scoring standardization approach to normalize all sensor signals, making our calibration results more easily transferable among sensor packages. We also attempt several different physical co-location schemes, and explore several calibration models in which only one sensor system needs to be co-located with a reference instrument, and can be used to calibrate the rest of the fleet of sensor systems. This approach greatly reduces the time and effort involved in field normalization without compromising goodness of fit of the calibration model to a significant extent. We also explore other factors affecting the performance of the sensor system quantification method, including the use of different reference instruments, duration of co-location, time averaging, transferability between different physical environments, and the age of metal oxide sensors. Our focus on methane and stationary monitors, in addition to the z-scoring standardization approach, has broad applications in low-cost sensor calibration and utility.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.