Abstract

Activity recognition is a key task for the development of advanced and effective ubiquitous applications in fields like ambient assisted living. A major problem in designing effective recognition algorithms is the difficulty of incorporating long-range dependencies between distant time instants without incurring substantial increase in computational complexity of inference. In this paper we present a novel approach for introducing long-range interactions based on sequential pattern mining. The algorithm searches for patterns characterizing time segments during which the same activity is performed. A probabilistic model is learned to represent the distribution of pattern matches along sequences, trying to maximize the coverage of an activity segment by a pattern match. The model is integrated in a segmental labeling algorithm and applied to novel sequences, tagged according to matches of the extracted patterns. The rationale of the approach is that restricting dependencies to span the same activity segment (i.e., sharing the same label), allows keeping inference tractable. An experimental evaluation shows that enriching sensor-based representations with the mined patterns allows improving results over sequential and segmental labeling algorithms in most of the cases. An analysis of the discovered patterns highlights non-trivial interactions spanning over a significant time horizon.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.