Abstract

The paper discusses high-order geometrical mapping for handling curvilinear geometries in high-accuracy discontinuous Galerkin simulations for time-domain Maxwell problems. The proposed geometrical mapping is based on a quadratic representation of the curved boundary and on the adaptation of the nodal points inside each curved element. With high-order mapping, numerical fluxes along curved boundaries are computed much more accurately due to the accurate representation of the computational domain. Numerical experiments for two-dimensional and three-dimensional propagation problems demonstrate the applicability and benefits of the proposed high-order geometrical mapping for simulations involving curved domains.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.