Abstract
Low-cost air quality sensors can help increase spatial and temporal resolution of air pollution exposure measurements. These sensors, however, most often produce data of lower accuracy than higher-end instruments. In this study, we investigated linear and random forest models to correct PM2.5 measurements from the Denver Department of Public Health and Environment (DDPHE)'s network of low-cost sensors against measurements from co-located U.S. Environmental Protection Agency Federal Equivalence Method (FEM) monitors. Our training set included data from five DDPHE sensors from August 2018 through May 2019. Our testing set included data from two newly deployed DDPHE sensors from September 2019 through mid-December 2019. In addition to PM2.5, temperature, and relative humidity from the low-cost sensors, we explored using additional temporal and spatial variables to capture unexplained variability in sensor measurements. We evaluated results using spatial and temporal cross-validation techniques. For the long-term dataset, a random forest model with all time-varying covariates and length of arterial roads within 500m was the most accurate (testing RMSE=2.9μg/m3 and R2=0.75; leave-one-location-out (LOLO)-validation metrics on the training set: RMSE=2.2μg/m3 and R2=0.93). For on-the-fly correction, we found that a multiple linear regression model using the past eight weeks of low-cost sensor PM2.5, temperature, and humidity data plus a near-highway indicator predicted each new week of data best (testing RMSE=3.1μg/m3 and R2=0.78; LOLO-validation metrics on the training set: RMSE=2.3μg/m3 and R2=0.90). The statistical methods detailed here will be used to correct low-cost sensor measurements to better understand PM2.5 pollution within the city of Denver. This work can also guide similar implementations in other municipalities by highlighting the improved accuracy from inclusion of variables other than temperature and relative humidity to improve accuracy of low-cost sensor PM2.5 data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.