Abstract
This paper considers a Leray regularization model of incompressible, nonisothermal fluid flows which uses nonlinear filtering based on indicator functions and introduces an efficient numerical method for solving it. The proposed method uses a multistep, second‐order temporal discretization with a finite element (FE) spatial discretization in such a way that the resulting algorithm is linear at each time level and decouples the evolution equations from the velocity filter step. Since the indicator function chosen in this model is mathematically based on approximation theory, the proposed numerical algorithm can be analyzed robustly, i.e., the stability and convergence of the method is provable. A series of numerical tests are carried out to verify the theoretical convergence rates and to compare the algorithm with direct numerical simulation and the usual Leray‐α model of the flow problem.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.