Abstract

Text categorization is the problem of classifying text documents into a set of predefined classes. In this paper, we investigated two approaches: a) to develop a classifier for text document based on Naive Bayes Theory and b) to integrate this classifier into a meta-classifier in order to increase the classification accuracy. The basic idea is to learn a meta-classifier to optimally select the best component classifier for each data point. The experimental results show that combining classifiers can significantly improve the classification accuracy and that our improved meta-classification strategy gives better results than each individual classifier. For Reuters2000 text documents we obtained classification accuracies up to 93.87%

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.