Abstract

Circular permutation of proteins is a powerful technique to explore the importance of the polypeptide secondary structure order for attaining the final three-dimensional structure. Here, we designed a circular permutation of the TEM beta-lactamase in order to produce a new domain-forming amino acid arrangement in the polypeptide sequence. Closing the normal N- and C-termini with the connecting peptide GGS and creating new N- and C-termini at position 216, produces a severely impaired permuted protein. Introduction of a connector with random components allows the isolation of enzymes with better activities and indicates a selection for a potential helix-stop signal at the new super-secondary motif. We applied several directed-evolution cycles, starting from permuted enzymes with each of the two different connecting peptides, and selecting for antibiotic resistance and isolated several mutants with resistance levels close to those of the wild-type enzyme. We also analyze some of the data collected on the outcomes and paths of these evolutionary experiments. A purified sixth cycle variant with connector peptide GGS showed catalytic efficiency values approximately 8% of the natural enzyme.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.