Abstract
In this work, the impact of a shallow aluminum channel implantation on the channel properties of SiC p-MOSFETs and digital SiC CMOS devices is investigated. For this purpose, p-MOSFETs, CMOS inverters and ring oscillators with different channel implantation doses were fabricated and electrically characterized. The threshold voltage of the resulting p-MOSFETs was shifted from-5 V to-3.6 V whereas the effective channel mobility was slightly decreased from 11.8 cm2/Vs to 10.2 cm2/Vs for a p-MOSFET channel implantation dose of 2∙1013 cm-2 compared to the non-implanted channel. The resulting p-MOSFETs enable SiC CMOS logic circuits to operate with a 5 V power supply and to satisfy 5 V TTL input level specification over the whole temperature range of 25°C to 400°C. Furthermore the propagation delay time of inverters was reduced by 80% at 25°C and 40% at 400°C compared to inverters without p-MOSFET channel implantation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.