Abstract
Point clouds have been a popular representation to describe 3D environments for autonomous driving applications. Despite accurate depth information, sparsity of pointsresults in difficulties in extracting sufficient features from vulnerable objects of small sizes. One solution is leveraging self-attention networks to build long-range connections between similar objects. Another method is using generative models to estimate the complete shape of objects. Both approaches introduce large memory consumption and extra complexity to the models while the geometric characteristics of objects are overlooked. To overcome this problem, this paper proposes Point Augmentation (PA)- RCNN, focusing on small object detection by generating efficient complementary features without trainable parameters. Specifically, 3D points are sampled with the guidance of object proposals and encoded through the 3D grid-based feature aggregation to produce localised 3D voxel properties. Such voxel attributes are fed to the pooling module with the aid of fictional points, which are transformed from sampled points considering geometric symmetry. Experimental results on Waymo Open Dataset and KITTI dataset show a superior advantage in the detection of distant and small objects in comparison with existing state-ofthe- art methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.