Abstract

Abstract. Collisions and safety are important concepts when dealing with urban designs like shared spaces. As pedestrians (especially the elderly and disabled people) are more vulnerable to accidents, realising an intelligent mobility aid to avoid collisions is a direction of research that could improve safety using a wearable device. Also, with the improvements in technologies for visualisation and their capabilities to render 3D virtual content, AR devices could be used to realise virtual infrastructure and virtual traffic systems. Such devices (e.g., Hololens) scan the environment using stereo and ToF (Time-of-Flight) sensors, which in principle can be used to detect surrounding objects, including dynamic agents such as pedestrians. This can be used as basis to predict collisions. To envision an AR device as a safety aid and demonstrate its 3D object detection capability (in particular: pedestrian detection), we propose an improvement to the 3D object detection framework Frustum Pointnet with human pose and apply it on the data from an AR device. Using the data from such a device in an indoor setting, we conducted a comparative study to investigate how high level 2D human pose features in our approach could help to improve the detection performance of orientated 3D pedestrian instances over Frustum Pointnet.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.