Abstract

Tropical forests and savannas are responsible for the largest proportion of global Gross Primary Productivity (GPP), a major component of the global carbon cycle. However, there are still deficiencies in the spatial and temporal information of tropical photosynthesis and its relations with environmental controls. The MOD17 product, based on the Light Use Efficiency (LUE) concept, has been updated to provide GPP estimates around the globe. In this research, the MOD17 GPP collections 5.0, 5.5 and 6.0 and their sources of uncertainties were assessed by using measurements of meteorology and eddy covariance GPP from eight flux towers in Brazilian tropical ecosystems, from 2000 to 2006. Results showed that the MOD17 collections tend to overestimate GPP at low productivity sites (bias between 111% and 584%) and underestimate it at high productivity sites (bias between −2% and −18%). Overall, the MOD17 product was not able to capture the GPP seasonality, especially in the equatorial sites. Recalculations of MOD17 GPP using site-specific meteorological data, corrected land use/land cover (LULC) classification, and tower-based LUE parameter showed improvements for some sites. However, the improvements were not sufficient to estimate the GPP seasonality in the equatorial forest sites. The use of a new soil moisture constraint on the LUE, based on the Evaporative Fraction, just showed improvements in water-limited sites. Modifications in the algorithm to account for separate LUE for cloudy and clear sky days presented noticeably improved GPP estimates in the tropical ecosystems investigated, both in magnitude and in seasonality. The results suggest that the high cloudiness makes the diffuse radiation an important factor to be considered in the LUE control, especially over dense forests. Thus, the MOD17 GPP algorithm needs more updates to accurately estimate productivity in tropical ecosystems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.