Abstract

Computational prediction of RNA tertiary structures is a significant challenge, especially for longer RNA and pseudoknots. At present it is still difficult to do this by pure all-atom molecular dynamics simulation. One of possible approaches is through hierarchical steps: from sequence to secondary structure and then to tertiary structure. Here we present improvements of two key steps of this approach, the manual adjustment of atom clashes and bond stretches and molecular dynamics refinement. We provide an energy function to find the locations of atom clashes and bond stretches and to guide their manual adjustment and a new scheme of molecular dynamics refinement using a tested combination of solvent model and the ff98 Amber force field suitable for RNA. We predicted with higher accuracy the tertiary structures of nine typical RNA molecules of lengths from 12 to 52, including hairpins, duplex helices and pseudoknots.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call