Abstract
Although the prediction of propeller cavitation-induced pressure fluctuation strongly depends on the model-scale measurement in a cavitation tunnel, there is still a lack of correlation with full-scale data. This paper deals with the enhancement of such a correlation deficiency by improving the conventional model-test technique, two majors of which are in the following. One is to take into account the boundary layer effect of wooden fairing plate at the ceiling of water cavitation tunnel. The other is to avoid the resonance frequency range of model-ship via adjusting the revolution speed of model propeller. Through a case study, for which both model and full-scale test data are available, the improved method in this study shows its validness, and furthermore a close correlation with full scale measurement.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.