Abstract

CaO-based sorbents are suitable candidates for CO2 capture at high temperatures. However, the CO2 capture capacity of untreated CaO-based sorbents decreases sharply after a few cycles. In this paper, a wet mixing method was employed to synthesize CaO–molecular sieve–alumina ceramic sorbents for CO2 capture. Cyclic experiments were carried out in a thermogravimetric analyzer (TGA). The sorbent using molecular sieve and alumina ceramic as the calcium precursors showed the best cyclic CO2 uptake capacity, 0.41g CO2/g sorbent after 20 cycles of calcination and carbonation. The synthesized materials were characterized by X-ray diffraction (XRD), nitrogen adsorption and desorption isotherms test, and scanning electron microscopy (SEM)/energy dispersive spectrometer (EDS). The sorbent showed a better sintering-resistant property and a more porous microstructure during multiple calcination and carbonation cycles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.