Abstract
This paper deals with the comparison of cyclone forecasts from the two versions of the operational global ensemble prediction system (EPS) at the National Centre for Medium Range Weather Forecasting (NEPS). The previous version had a horizontal resolution of 33 km with 44 ensemble members (NEPS) whereas the updated version of this EPS has a resolution of 12 km with 11 members (NEPS-UP). The ensemble mean forecasts from both the models are compared using the direct position (DPE), along (ATE) and cross track (CTE) errors. For the verification of strike probability, Brier Score (BS), Brier Skill Score (BSS), Reliability Diagram, Relative Operating Characteristic (ROC) Curve and Root Mean Square Error (RMSE) in mean Vs Spread in members are used. For verification of intensity, RMSE in maximum wind speed from the ensemble mean forecasts are compared.Comparison of ensemble mean tracks from both models showed lower errors in NEPS-UP for all forecast lead times. The decrease in the DPE, ATE and CTE in NEPS-UP was around 38%, 48% and 15% respectively. NEPS-UP showed lower BS and higher BSS values indicating a better match between observed frequencies and forecast probabilities as well as higher prediction skills. The reliability diagram showed higher accuracy for NEPS-UP as compared to NEPS. The ROC curves showed that for forecasts with higher probabilities the hit rate was high in NEPS-UP. There was a greater consensus between the RMSE and Spread for NEPS-UP at all lead times. It was also seen that the RMSE in mean showed a 41% decrease from NEPS to NEPS-UP. On comparing maximum wind, it was found that for all lead times the RMSE in maximum wind speed for NEPS-UP was lower than NEPS.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.