Abstract

Understanding pollutant sorption, bioremediation of these pollutants, and their interactions with humic substances requires knowledge of molecular-level processes. New developments with nuclear magnetic resonance (NMR) experiments and labeled compounds have improved the overall understanding of these mechanisms. The advancements made with two-dimensional NMR show great promise, as structural information and hydrogen–carbon bond connectivity can be discerned. This communication presents the application of improved two-dimensional NMR methods, the double quantum filtered (DQF) correlation spectroscopy (COSY) and echo/anti-echo heteronuclear single quantum coherence (HSQC) experiments, for use in structural studies of humic substances. Both experiments were found to produce significant improvements over the conventional COSY and heteronuclear multiple quantum coherence (HMQC) experiments that have been previously employed in similar studies. The more sensitive echo/anti-echo HSQC experiment produced more cross-peaks with higher resolution when compared with the HMQC spectra. The DQF-COSY significantly suppressed the diagonal signals and allowed numerous signals previously hidden in the standard COSY experiment to be observed. These improvements will aid current characterization strategies of humic substances from soils, sediments, and water and their subsequent reactions with pollutants and microorganisms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call