Abstract

In order to effectively study phototropism, the directed growth in response to light, we performed a series of experiments in microgravity to better understand light response without the “complications” of a 1- g stimulus. These experiments were named TROPI (for tropisms) and were performed on the European Modular Cultivation System (EMCS), a laboratory facility on the International Space Station (ISS). TROPI-1 was performed in 2006, and while it was a successful experiment, there were a number of technical difficulties. We had the opportunity to perform TROPI-2 in 2010 and were able to optimize experimental conditions as well as to extend the studies of phototropism to fractional gravity created by the EMCS centrifuge. This paper focuses on how the technical improvements in TROPI-2 allowed for a better experiment with increased scientific return. Major modifications in TROPI-2 compared to TROPI-1 included the use of spaceflight hardware that was off-gassed for a longer period and reduced seed storage (less than 2 months) in hardware. These changes resulted in increased seed germination and more vigorous growth of seedlings. While phototropism in response to red illumination was observed in hypocotyls of seedlings grown in microgravity during TROPI-1, there was a greater magnitude of red-light-based phototropic curvature in TROPI-2. Direct downlinking of digital images from the ISS in TROPI-2, rather than the use of analog tapes in TROPI-1, resulted in better quality images and simplified data analyses. In TROPI-2, improved cryo-procedures and the use of the GLACIER freezer during transport of samples back to Earth maintained the low temperature necessary to obtain good-quality RNA required for use in gene profiling studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.