Abstract

Incubation-type planar patch clamp biosensors, first described in 2008, are expected to enable the realization of high-throughput neural network screening. Several technical challenges must be overcome before this technique may be implemented. First, it is difficult to achieve a sufficiently high seal resistance (a gigaohm seal), which is an important parameter for patch clamp operation. A low seal resistance produces large baseline fluctuations corresponding to the fluctuation of the solid–liquid and liquid–liquid interface potentials. Second, the sensor cell must be positioned at a micropore over a long incubation time while maintaining the cell viability. Finally, a low-cost high-performance sensor chip suitable for high-throughput screening must be developed. These problems have been resolved to some extent in the present work. A stable electrode with a salt bridge structure was developed here to reduce the baseline fluctuations. The cell positioning technology was improved by forming a novel cell trapping pattern using hot embossing on a plastic (polymethylmethacrylate (PMMA)) substrate for use in a microfluidic sensor chip. The combination of the stable electrode and the cell trapping pattern dramatically increased the device success probability from ∼2% to 60–80% using HEK293 cells as a model system. The utility of the present results was tested by characterizing rat hippocampal neuron networks. The seal resistance was found to be lower than the seal resistance obtained from the HEK293 cells. The effectiveness of the stable electrodes, however, was significantly clear and spontaneous channel currents from the neural network were successfully observed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.