Abstract

Finite element approaches generally do not guarantee exact satisfaction of conservation laws especially when Dirichlet-type boundary conditions are imposed. This article discusses improvement of the global mass conservation property of quasi-bubble finite element solutions for the shallow water equations, focusing on implementations of the surface-elevation boundary conditions. We propose two alternative implementations, which are shown by numerical verification to be effective in improving the smoothness of solutions near the boundary and in reducing the mass conservation error. The improvement of the mass conservation property contributes to augmenting the reliability and robustness of long-term time integrations. Copyright © 2006 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.