Abstract

Coalbed Natural Gas extraction usually results in the production of excess, or product, water, necessitating a strategy for disposal and minimizing landscape and habitat impacts. In the Powder River Basin in Wyoming, product water is either discharged into ephemeral streams or retention/detention ponds. Monitoring these water bodies is important for environmental, habitat, and human health perspectives. This study assessed the benefits of using higher spatial resolution ASTER image, in contrast to more commonly used moderate-resolution Landsat imagery, for detecting smaller water bodies in the Powder River Basin. ASTER and Landsat Thematic Mapper (TM) images were acquired concomitantly and classified following similar methods to identify water bodies for three color classes and a range of sizes. Results showed that the ASTER image had significantly higher accuracies for detecting clear and green colored water bodies, but did not demonstrate significant improvement for detecting turbid water bodies. ASTER also showed significant improvements in detecting small-scale water bodies. However this improved performance was somewhat offset due to the misclassification of other landscape elements as water in the ASTER image. Overall when compared to Landsat TM image, ASTER image more accurately detected more water bodies, especially those with a relatively small surface area, with the two images producing similar results at large scales. The application of ASTER is therefore appropriate for monitoring and evaluation of water bodies in the Powder River Basin and elsewhere.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call