Abstract

Development has continued with intrinsic feature optical motion tracking for awake animal imaging to measure 3D position and orientation (pose) for motion compensated reconstruction. Prior imaging results have been directed towards head motion measurement for SPECT brain studies in awake unrestrained mice. This work improves on those results in extracting and tracking intrinsic features from multiple camera images and computing pose changes from the tracked features over time. Previously, most motion tracking for 3D imaging has been limited to measuring extrinsic features such as retro-reflective markers applied to an animal's head. While this approach has been proven to be accurate, the use of external markers is undesirable for several reasons. The intrinsic feature approach has been further developed from previous work to provide full pose measurements for a live mouse scan. Surface feature extraction, matching, and pose change calculation with point tracking and accuracy results are described. Experimental pose calculation and 3D reconstruction results from live images are presented.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call