Abstract

The concept of utilising honeycomb abradable seals to improve gas turbine engine performance has been under development for many years. Engine operating temperatures, in the region of the seals, have been restricted to below 950°C by the reliance on a chromia scale for degradation protection. The introduction of nickel brazed FeCrAlY based alloys within the honeycomb seal could facilitate a safe increase in operating temperatures to over 1100°C. This is aided by the formation of a more stable, α-alumina scale.These Fe–20Cr–5Al–0.5Y foils, including the commercially produced variant designated MI2100, have been designed for a service lifetime of up to 24,000 hours. However, burner tests and isothermal oxidation tests in laboratory air at 1100 and 1200°C have shown them to fail after much shorter times. The major degradation of the foils occurs adjacent to the brazed region and limits the lifetime of the honeycomb seal.Cross-sectional analysis in a scanning electron microscope of seals manufactured from MI2100 foils, after oxidation testing at 1200°C, has shown that voids form beneath the protecting α-alumina scale. In some cases, these voids are filled with silica, with some chromia present, and may be the origin of the subsequent degradation process. The results contrast with tests on free-standing thin foils (100 μm thickness) of MI2100 and other FeCrAlY alloys, where a continuous layer of chromia is formed below the alumina outer scale, once the aluminium content of the alloy drops below a critical composition. Although there is a small amount of silicon in MI2100, the main source of the high level of silicon found in the honeycombs is most likely to be the brazing alloy, since both nickel and silicon from the braze are very mobile in FeCrAlY alloys at high temperatures.The formation and filling of voids with silica may be associated with the subsequent failure of the protective alumina scales on these brazed alloys, and this mechanism will be developed further in this paper.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.