Abstract

To compare the effectiveness of training in heat and in sweat clothing in cool conditions on improving heat tolerance, two groups of active subjects (n = 6 in each) performed an interval running heat-tolerance test before and after a 7-day experimental treatment. On each treatment day the subjects attempted to complete 4 x 15 min interval treadmill running periods (a 7.5 s effort every 30 s, on 15 km h-1, 15% grade; the same exercise format as the heat-tolerance test), which were interspersed with 5-min recovery periods (total time each day = 80 min). Group 1 (heat) ran in shorts, socks and shoes in hot humid conditions, and Group 2 (sweat clothing) ran in cool conditions dressed in shorts, socks and T-shirt covered by a polyester-cotton tracksuit, over which was worn 100% nylon spray-proof pants and jacket (cotton lined) with an acrylic cloth bobble hat (beanie) on the head. Both groups displayed changes typical of heat acclimatization over the 7-day period, with significant decreases in final rectal temperature (Tr) and heart rate (HR) being evident, but no change in sweat loss. Mean skin temperature (Tsk) was similar in both groups during the training sessions (heat group: 34.8-35.7 degrees C; sweat clothing group 34.9-35.5 degrees C). After the heat-tolerance test, both groups had significantly lower Tr, Tsk and HR values than before, and sweating sensitivity (g m-2 h-1 degrees C rise in Tr) was significantly increased. There was only one significant difference between the two groups (Tsk, 20th min value). It was concluded that training in sweat clothing in cool conditions can provide the same improvements in heat tolerance as training in hot humid conditions where a fixed exercise intensity and duration are used.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.