Abstract

In the mid-1980s, eastern filbert blight (EFB) fungus, Anisogramma anomala (Peck) E. Müller, was discovered in Oregon's main hazelnut-producing region and now is present throughout the hazelnut-producing area. Oregon State University's (OSU) Hazelnut Breeding Program responded by developing EFB-resistant cultivars, the first of which was released in 2005. The breeding program has also selected for other beneficial traits such as uniform early nut maturation, larger kernel size, and improved kernel quality. A 2008 OSU economic study on the costs of establishing and producing hazelnuts showed that the EFB-resistant cultivars enhanced economic viability of orchards, increasing cumulative cash flow during the 12-year establishment period by $12,243 per hectare. Several completely resistant cultivars have been released from the OSU Hazelnut Breeding program, all of which have ‘Gasaway’ as a resistance source, which transmits a dominant allele at a single locus that provides resistance to EFB. Additional EFB-resistant genotypes have also been identified from a diversity of origins that are being integrated into the OSU breeding program to produce new cultivars expressing multiple sources of genetic resistance. Interest in growing hazelnuts is increasing in other parts of the United States; for example, the Arbor Day Foundation began the Hazelnut Research Project in 1996 in Nebraska. A Hybrid Hazelnut Consortium was formed to join the leading hazelnut researchers in the United States. The Consortium's goal is to create a world-leading research and breeding program to develop hazelnuts as a widely adapted, high-yielding, and low-input sustainable crop that is competitive with annual crops for food, feed, or bioenergy. At Rutgers University, there has been a program of breeding and research for hazelnuts for the eastern United States since 1996. The program currently has ≈11,000 hazelnut seedlings undergoing evaluation. The Rutgers program is also looking for winter-hardy genotypes. They have been working closely with OSU to assess the response of OSU hazelnut selections that are resistant to EFB in Oregon when they are exposed to EFB isolates collected from across the eastern United States. This work has demonstrated the need for cultivars to express multiple sources of resistance and has prompted quarantine on importation of hazelnut plants into Oregon from other states where EFB strains may differ. Rutgers is also searching for new sources of resistance to EFB from seedling populations from Europe with the goal of integrating these sources into American germplasm. More effective Integrated Pest Management for EFB-susceptible hazelnut cultivars has been developed by OSU scientists. They recommend a management program that integrates scouting for and pruning infected tissue, fungicidal sprays, and the use of more resistant cultivars. Advances in hazelnut fertilizer management have included descriptions of patterns of nitrogen uptake, distribution, and use using isotopically labeled nitrogen.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call