Abstract
Forests are critical to mitigating global climate change and regulating climate through their role in the global carbon and water cycles. Accurate monitoring of forest cover is, therefore, essential. Image segmentation networks based on convolutional neural networks have shown significant advantages in remote sensing image analysis with the development of deep learning. However, deep learning networks typically require a large amount of manual ground truth labels for training, and existing widely used image segmentation networks struggle to extract details from large-scale high resolution satellite imagery. Improving the accuracy of forest image segmentation remains a challenge. To reduce the cost of manual labelling, this paper proposed a data augmentation method that expands the training data by modifying the spatial distribution of forest remote sensing images. In addition, to improve the ability of the network to extract multi-scale detailed features and the feature information from the NIR band of satellite images, we proposed a high-resolution forest remote sensing image segmentation network by fusing multi-scale features based on double input. The experimental results using the Sanjiangyuan plateau forest dataset show that our method achieves an IoU of 90.19%, which outperforms prevalent image segmentation networks. These results demonstrate that the proposed approaches can extract forests from remote sensing images more effectively and accurately.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.