Abstract
Mass spectrometry imaging (MSI) is a technique that analyzes the chemical information and spatial distribution of surface analytes. Most MSI studies are conducted in microprobe mode, in which a mass spectrum is collected for each pixel to create a mass image. Thus, the spatial resolution, sample imaging area, and imaging speed are linked. In this mode, halving the pixel size quadruples the analytical time, which presents a practical limit on the high spatial resolution MSI throughput. Fast mass microscopy (FMM) is, in contrast, a microscope-mode MSI technique that decouples spatial resolution and imaging speed. FMM circumvents the linear-quadratic relationship of pixel size and analytical time, which enables increased imaging size area and the analytical speed achievable. In this study, we implement instrument modifications to the FMM system, including the addition of linear encoders that enable roughly 8.5× faster imaging than was previously achieved, allowing a 42.5 × 26 mm2 sample area to be imaged at a 1 μm pixel size in <4.5 min. Linear encoders also enable the alignment of multipass images that increase image homogeneity and signal intensity. The applicability of FMM to large area samples has made it important to define the tolerance to height variations of the technique, which was determined to be at least 218 ± 0.03 (n = 3) μm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.