Abstract

For the detection of very small objects, high resolution detectors are expected to provide higher dose efficiency. We assessed this impact of increased resolution on a clinical photon counting detector CT (PCD-CT) by comparing its detectability in high resolution and standard resolution (with 2×2 binning and larger focal spot) modes. A 50μm-thin metal wire was placed in a thorax phantom and scanned in both modes at three exposure levels (12, 15, and 18 mAs); acquired data were reconstructed with three reconstruction kernels (Br40, Br68, and Br76, from smooth to sharp). A scanning nonprewhitening model observer searched for the wire location within each slice independently. Detection performance was quantified as area under the exponential transform of the free response ROC curve. The high-resolution mode had the mean AUCs at 18 mAs of 0.45, 0.49, and 0.65 for Br40, Br68, and Br76, respectively, which were 2 times, 3.6 times, and 4.6 times those of the standard resolution mode. The high-resolution mode achieved greater AUC at 12 mAs than the standard resolution mode at 18 mAs for every reconstruction kernel, but improvements were larger at sharper kernels. The results are consistent with the greater suppression of noise aliasing expected at higher frequencies with high resolution CT. This work illustrates that PCD-CT can provide large dose efficiency gains for detection tasks of small, high contrast lesions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call