Abstract

The analysis of geotechnical problems involving saturated soils under cyclic loading requires the use of advanced constitutive models. These models need to describe the main characteristics of the material under cyclic loading and undrained conditions, such as the rate of the pore water pressure accumulation and the stress attractors. When properly doing so, the models are expected to be reliable for their use in boundary value problems. In this work, an extension of the widely implemented intergranular strain model by Niemunis and Herle (Mech Cohes Frict Mater 2(4):279–299, 1997) is proposed. The modification is aimed to improve the capabilities of the model when simulating a number of repetitive cycles, where a proper reduction of the strain accumulation is expected. For validation purposes, the reference model and proposed improvement are compared against some monotonic and cyclic triaxial tests. The results indicate that the intergranular strain improvement model provides a more realistic prediction of the accumulation rates under cyclic loading, without spoiling the advantages of the original formulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.