Abstract
Steel-concrete composite frame is one of the widely used structural systems. Earthquake and progressive collapse due to accidental localized damage are the main hazards that affect the safety of steel-concrete composite frames. Therefore, a seismic and progressive collapse resistant composite frame (SPCRCF) structural system is proposed based on a comprehensive consideration of the seismic and progressive collapse design requirements. The seismic and progressive collapse performances of the proposed SPCRCF were compared with the conventional steel-concrete composite frame using the experimental results of four specimens. The general-purpose finite element software, MSC.Marc, was used to simulate the specimens. The experimental and simulation results show that the proposed SPCRCF has better seismic resilience (low damage, self-centering, and easy repair) and larger progressive collapse resistance compared to conventionally designed steel-concrete composite frames.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.