Abstract

Biomethane (BM) is highly competitive bio-energy alternatives for lowering the dependency on fossil fuels globally. The form of BM that is most suitable for storage as well as shipping to far-flung areas of the world is liquefied biomethane (LBM). However, due to the significant power consumption by compressors used in BM liquefaction process (like natural gas), it is a cost- and energy-intensive operation. Additionally, because biomethane is created at atmospheric pressure, unlike ordinary natural gas, liquefaction requires more power consumption because the pressure at which BM is produced is much less than corresponding critical pressure. Therefore, an integrated system of liquid air energy storage (LAES) system discharging end and a biomethane liquefaction process is introduced that is both economical and efficient in terms of energy use. The sub-cooling and liquefaction processes of biomethane are aided by the cold-exergy of liquid air at the time of regasification mode of LAES, which eventually lowers the refrigeration cycle duty of LBM process. On the other hand, gaining the additional advantage, the expansion stage of liquid air is aided by the thermal exergy of a compressed mixed refrigerant (MR). On the basis of conventional exergy analysis, composite curves analysis, advanced exergy analysis, and sustainability index, the impacts of novel integration of LBM and LAES are estimated in this study. Conventional exergy analysis determines that 15.9 % of exergy destruction is decreased in the proposed LBM-LAES system having additional power production of 4529 kW using gas turbine. Results based on advanced exergy analysis conclude that avoidable, endogenous and exogenous portions of exergy destructions are decreased by 28.9 %, 39.9 % and 43 %, respectively; which implies the significant improvement potential. Composite curves analysis depicts that the efficiency of primary cryogenic heat exchanger is improved in the proposed integrated scheme. Additionally, the overall sustainability index is increased from 1.55 to 2.13 for LBM-LAES process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.