Abstract

The objective of the present study was to develop a novel molybdenum disulfide/iron oxide/gold nanorods (MoS2/Fe3O4/GNR) nanocomposite (MFG) with different concentrations of AgNO3 solution (MFG1, MFG2, and MFG3) for topical doxorubicin (DOX) drug delivery. Then, these nanocomposites were synthesized and characterized by Fourier transform infrared (FTIR), Transmission electron microscopy (TEM), Dynamic light scattering (DLS), and Ultraviolet-visible (UV–Vis) spectroscopies to confirm their structural and optical properties. Cytotoxicity of samples on Hela cell was determined using MTT assay. Results indicated that nanocomposites possess little cytotoxicity without NIR laser irradiation. Also, the relative viabilities of Hela cells decreased when the concentration of AgNO3 solution increased in this nanocomposite. Using NIR irradiation, the relative viabilities of Hela cells decreased when the concentration of samples increased. Acridine orange/propidium iodide (PI) staining, flow cytometry were recruited to evaluate the effect of these nanocomposites on apoptosis of Hela cells. Finally, results revealed when DOX loading increased in nanocomposite, then cell viability was decreased in it. Therefore, these properties make MFG3 nanocomposite a good candidate for photothermal therapy and drug loading.Graphical

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.