Abstract
We introduce a Lagrangian implementation of the full coupled-cluster reduction [Xu et al., Phys. Rev. Lett. 121, 113001 (2018)], that is, a selected coupled-cluster (CC) based on an arbitrary-order full CC expansion using direct commutator expansions. In this method, the screening for the products of cluster amplitudes plays a central role to reduce the computational cost for the nonlinear commutator operations, while the convergence of the total energy in the standard energy expression is not rapid with tightening the threshold. The new implementation using Lagrangian is robust, containing error only quadratic to those of amplitudes, allowing a much larger screening threshold. We demonstrate the performance of the new implementation by investigating the calculations of N2 and C6H6. The accuracy and applicability are also demonstrated for the potential energy curve of H2O in comparison with conventional quantum chemical methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.