Abstract

In 1987, Northby presented an efficient lattice based search and optimization procedure to compute ground states ofn-atom Lennard-Jones clusters and reported putative global minima for 13⩽n⩽150. In this paper, we introduce simple data structures which reduce the time complexity of the Northby algorithm for lattice search fromO(n5/3) per move toO(n2/3) per move for ann-atom cluster involving full Lennard-Jones potential function. If nearest neighbor potential function is used, the time complexity can be further reduced toO(logn) per move for ann-atom cluster. The lattice local minimizers with lowest potential function values are relaxed by a powerful Truncated Newton algorithm. We are able to reproduce the minima reported by Northby. The improved algorithm is so efficient that less than 3 minutes of CPU time on the Cray-XMP is required for each cluster size in the above range. We then further improve the Northby algorithm by relaxingevery lattice local minimizer found in the process. This certainly requires more time. However, lower energy configurations were found with this improved algorithm forn=65, 66, 75, 76, 77 and 134. These findings also show that in some cases, the relaxation of a lattice local minimizer with a worse potential function value may lead to a local minimizer with a better potential function value.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.