Abstract
The time-of-flight (TOF) method is one of the most common ways to measure the temperature of cold atoms. In the cold atomic fountain setup, the geometry of the probe beam will introduce the measurement errors to the spatial distribution of cold atomic cloud, which will lead to the measurement errors on atomic temperature. Using deconvolution, we recover the atomic cloud profile from the TOF signal. Then, we use the recovered signals other than the TOF signals to obtain a more accurate atomic temperature. This will be important in estimating the effects of cold atom collision shift and the shift due to transverse cavity phase distribution on an atomic fountain clock.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.