Abstract
The dielectric elastomer minimum energy structure (DEMES) can realize large angular deformations by a small voltage-induced strain of the dielectric elastomer (DE), so it is a suitable candidate to make a rotary joint for a soft robot. However, the payload capacity of a DEMES joint is small compared with other types of dielectric elastomer actuators. Stacking layers of pre-strained DE thin films can increase the output torque of DEMES, but greater driving power will be needed, limiting application in mobile or flying soft robots. In this paper, based on static analysis, a design of DEMES is proposed that has larger torque than the traditional design with the same number of layers of dielectric elastomer. As an experimental example, the torque of the film with the improved design is larger than 1.7 times that of the traditional design. Experiments validate the theoretical analysis and demonstrate the improvement of DEMES output torque.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.